Calculation of helium nuclei in quenched lattice QCD (multi-baryon systems in lattice QCD)

Takeshi YAMAZAKI
Center for Computational Sciences
University of Tsukuba
Y. Kuramashi and A. Ukawa for PACS-CS Collaboration
Ref. arXiv:0912.1383 [hep-lat]

MENU2010 @ The College of William and Mary May 31 - June 4, 2010

1. Introduction

Spectrum of Nuclei
success of Shell model since 1949: Jensen and Mayer degrees of freedom of protons and neutrons

Spectrum of nucleon (proton and neutron) degrees of freedom of quarks and gluons
success of non-perturbative calculation of QCD such as lattice QCD

Motivation :
Understand property and structure of nuclei from QCD
If we can study nuclei from QCD, we may be able to

1. reproduce spectrum of nuclei
2. predict property of nuclei hard to calculate or observe such as neutron rich nuclei

multi-nucleon state from lattice QCD

1. NN state ${ }^{3} \mathrm{~S}_{1}$ and ${ }^{1} \mathrm{~S}_{0}$
'95 Fukugita et al: Quenched QCD scattering energy $\rightarrow a_{0}>0$
'06 NPLQCD: $N_{f}=2+1$ partially quenched mixed action QCD scattering energy $\rightarrow a_{0} \lesssim 0$
'07 Ishii, Aoki, Hatsuda : Quenched and $N_{f}=2+1$ QCD wave function $\rightarrow a_{0}>0$
'09 NPLQCD: $N_{f}=2+1$ QCD (anisotropic)
scattering energy $\rightarrow a_{0} \lesssim 0$
Deuteron: unbound due to $m_{\pi} \gtrsim 0.3 \mathrm{GeV}$
2. NNN state
'09 NPLQCD : $N_{f}=2+1$ QCD (anisotropic)
$\bar{E}^{0} \equiv^{0} n$ and pnn states
Triton: further study necessary
Helium nucleus: larger binding energy He^{4} : double magic numbers $Z=2, N=2$

In this work: Exploratory study for He and ${ }^{3} \mathrm{He}$ nuclei

Outline

1. Introduction
2. Problems of multi-nucleon bound state
3. Simulation parameters
4. Results for He and ${ }^{3} \mathrm{He}$
5. Summary
6. Problems of multi-nucleon bound state
7. Statistical error
$\begin{aligned} m_{\pi} & \rightarrow \text { small } \\ \# \text { nucleon } & \rightarrow \text { large }\end{aligned} \Rightarrow \frac{\text { noise }}{\text { signal }} \rightarrow$ large
Avoid large statistical fluctuation unphysically heavy quark mass $+O\left(10^{3}\right)$ measurements

$$
m_{\pi}=0.8 \mathrm{GeV} \text { and } m_{N}=1.62 \mathrm{GeV}
$$

2. Calculation cost
3. Identification of bound state in finite volume

Calculation cost

$C_{\mathrm{He}}(t)=\langle 0| \mathrm{He}(t) \overline{\mathrm{He}}(0)|0\rangle$ with $\mathrm{He}=p^{2} n^{2}=[u d u]^{2}[d u d]^{2}$
Number of Wick contraction $N_{u}!\times N_{d}!=\left(2 N_{p}+N_{n}\right)!\times\left(2 N_{n}+N_{p}\right)!$ contain identical contractions

$$
\begin{aligned}
\mathrm{He}: & 6!\times 6!=518400 \\
{ }^{3} \mathrm{He}: & 5!\times 4!=2880
\end{aligned}
$$

Reduction of contractions
Symmetries
$p \leftrightarrow p, n \leftrightarrow n$ in He operator
Isospin all $p \leftrightarrow$ all n
Calculate two contractions simultaneously
$u \leftrightarrow u$ in p or $d \leftrightarrow d$ in n

Calculation cost (cont'd)
$C_{\mathrm{He}}(t)=\langle 0| \mathrm{He}(t) \overline{\mathrm{He}}(0)|0\rangle$ with $\mathrm{He}=p^{2} n^{2}=[u d u]^{2}[d u d]^{2}$
Number of Wick contraction $N_{u}!\times N_{d}!=\left(2 N_{p}+N_{n}\right)!\times\left(2 N_{n}+N_{p}\right)!$ contain identical contractions

$$
\begin{array}{rllc}
\mathrm{He}: & 6!\times 6!=518400 & \longrightarrow & 1107 \\
3 \mathrm{He}: & 5!\times 4!=2880 & \longrightarrow & 93
\end{array}
$$

Furthermore, avoid same calculations of dirac and color indices
Block of three quark propagators B_{3}
zero momentum nucleon operator in sink time slice
Blocks of two B_{3}
1, 2, 3 dirac contractions carried out

Identification of bound state in finite volume Example) Two-particle system
observe small $\triangle E=E-2 m<0$ at single L

Identification of bound state in finite volume (cont'd) Example) Two-particle system observe small $\Delta E=E-2 m<0$ at single L

Bound state : $\Delta E=-\Delta E_{\text {bind }}+O\left(\mathrm{e}^{-\gamma L}\right)<0$
Beane et al., PLB585:106(2004), Sasaki, TY, PRD74:114507(2006)

Identification of bound state in finite volume (cont'd) Example) Two-particle system

$$
\text { observe small } \Delta E=E-2 m<0 \text { at single } L
$$

Attractive scattering state : $\Delta E=O\left(-\frac{a_{0}}{M L^{3}}\right)<0 \quad\left(a_{0}>0\right)$
Lüscher, CMP105:153(1986), NPB354:531(1991)
C.f.) N-particle scattering state : $\Delta E=E_{\text {scat }}-N m=O\left(-\frac{N C_{2} a_{0}}{M L^{3}}\right)$

Beane et al., PRD76:074507(2007)

Identification of bound state in finite volume (cont'd) Example) Two-particle system

$$
\text { observe small } \Delta E=E-2 m<0 \text { at several } L
$$

Identify bound state from volume dependence of ΔE
observe constant in infinite volume limit with $L=3.1,6.1,12.3 \mathrm{fm}$

3. Simulation parameters

- Quenched Iwasaki gauge action at $\beta=2.416$

$$
a^{-1}=1.54 \mathrm{GeV} \text { with } r_{0}=0.49 \mathrm{fm}
$$

- Tad-pole improved Wilson fermion action

$$
m_{\pi}=0.8 \mathrm{GeV} \text { and } m_{N}=1.62 \mathrm{GeV}
$$

- Three volumes

L	$L[f \mathrm{fm}]$	$N_{\text {conf }}$	$N_{\text {meas }}$
24	3.1	2500	2
48	6.1	400	12
96	12.3	200	12

- Exponential smearing sources $q(\vec{x})=A \exp (-B|\vec{x}|)$

$$
\begin{aligned}
& S_{1}, \quad S_{2} \\
& (A, B)=(0.5,0.5),(0.5,0.1) \text { for } L=24 \\
& (A, B)=(0.5,0.5),(1.0,0.4) \text { for } L=48,96
\end{aligned}
$$

- quark operator with non-relativistic projection in nucleon operator

Simulations:
PACS-CS at Univ. of Tsukuba, and HA8000 at Univ. of Tokyo

4. Results

Effective mass of He and ${ }^{3} \mathrm{He}$ nuclei at $L=48$

$$
m_{\mathrm{He}}(t)=\log \left(\frac{C_{\mathrm{He}}(t)}{C_{\mathrm{He}}(t+1)}\right)
$$

- Clear signal in $t<12$ and larger error in $t \geq 12$
- consistent plateaus in $8 \lesssim t \leq 12$

4. Results (cont'd)

Effective energy shift $\Delta E_{L}=m_{\mathrm{He},{ }^{3} \mathrm{He}}-N m_{N}$ of He nuclei at $L=48$
$\Delta E_{L}(t)=\log \left(\frac{R(t)}{R(t+1)}\right), \quad R_{\mathrm{He}}(t)=\frac{C_{\mathrm{He}}(t)}{\left(C_{N}(t)\right)^{4}}, \quad R_{3 \mathrm{He}}(t)=\frac{C_{3 \mathrm{He}}(t)}{\left(C_{N}(t)\right)^{3}}$

- $\Delta E_{L}<0$ in $8 \lesssim t \leq 12$
- consistent plateaus in $8 \lesssim t \leq 12$

4. Results (cont'd)

Volume dependence of $\Delta E_{L}=-\Delta E_{\text {bind }}+F(L)$ of He nuclei

- Small volume dependence
- Infinite volume limit with $F(L)=C / L^{3}$
- Non-zero binding energy in infinite volume limit

4. Results (cont'd)

Volume dependence of $\Delta E_{L}=-\Delta E_{\text {bind }}+F(L)$ of He nuclei

Binding increases as mass number in experiment, but inconsistent $\Delta E_{\mathrm{He}} / 4=6.9(2.0)(1.4) \mathrm{MeV}$ and $\Delta E_{3 \mathrm{He}} / 3=6.1(1.2)(1.0) \mathrm{MeV}$ mainly caused by heavy quark mass in calculation, probably

5. Summary

- Exploratory study of helium nuclei in quenched lattice QCD
- Unphysically heavy quark mass
- Reduction of calculation cost with some techniques
- Volume dependence of energy shift from free multi-nucleon state

Non-zero energy shift in infinite volume limit $\rightarrow \mathrm{He}$ and ${ }^{3} \mathrm{He}$ are bound at $m_{\pi}=0.8 \mathrm{GeV}$

Future work

- Quark mass dependence of ΔE
- Reduction of statistical error
- Deuteron bound state
- Larger nuclei
- Dynamical quark effect

